Treating intervertebral disc degeneration in an accelerated aging model with novel therapeutics

Luigi Aurelio Nasto, M.D.

Division of Spine Surgery
Department of Orthopaedics and Traumatology
"A. Gemelli" University Hospital
Catholic University of Rome, Italy
1. The *Ercc1*⁻/Δ mouse model, a new model for studying intervertebral disc degeneration

2. Targeting the NF-κB pathway for slowing down intervertebral disc degeneration

3. Targeting mitochondrial-generated reactive oxygen species (ROS) in intervertebral disc degeneration
1. The *Ercc1*-Δ mouse model, a new model for studying intervertebral disc degeneration

2. Targeting the NF-κB pathway for slowing down intervertebral disc degeneration

3. Targeting mitochondrial-generated reactive oxygen species (ROS) in intervertebral disc degeneration
Stages of Intervertebral Disc Degeneration

Grade I: normal juvenile disc

- nucleus pulposus and anulus fibrosus can clearly be distinguished
- the nucleus pulposus has a gel-like appearance and is highly hydrated
- anulus fibrosus consist of discrete fibrous lamellae
- cartilage endplates are uniformly thick and consist of hyaline cartilage

Grade II: normal adult disc

- peripheral appearance of white, fibrous tissue in the nucleus pulposus
- mucinous material is found between the lamellae of the anulus fibrosus
- thickness of the cartilage endplate is irregular

Grade III: early stage of degeneration

- consolidated fibrous tissue in the whole nucleus pulposus
- demarcation between nucleus pulposus and anulus fibrosus is lost and extensive mucinous infiltration in the anulus fibrosus is observed
- cartilage endplates show focal defects
Grade IV: advanced stage degeneration

- clefts in the nucleus pulposus appear, usually parallel to the endplate
- focal disruptions are found in the anulus fibrosus
- hyaline cartilage of the endplate is replaced by fibrocartilage; irregularities and focal sclerosis are found in the subchondral bone

Grade V: end stage

- typical disc structure may be lost completely
- clefts extend through nucleus pulposus and anulus fibrosus
- endplates display diffuse sclerosis

Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc.
Spine 15:411-415
A continuous process

annulus fibrosus & nucleus pulposus

Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science.
Spine; 27(23):2631-2644
The "central hypothesis" in disc biology

Disc PG homeostasis
- Balanced (No net loss)
- Perturbed (net PG loss)

Core PG, GAG... MMP expression

Anti-inflammatory cytokines

Pro-inflammatory cytokines

Loss of functional cells

PG expression

Make

Break

Old
Aging is a major risk factor for IDD

Normal

Construction quality & maintenance
Time-dependent wears and tears (slow)
Excessive loads (sudden)
Assaults
 radiation
 wind
 current

Degenerated

GENETICS (faulty)

AGING (time-dep damage of macromolecules)

MECHANICAL (trauma)

ENVIRONMENTAL
 Smoking
 occupation
 nutrition
The Ercc1^{-/Δ} mouse model

ENDONUCLEASE¹
Repairs DNA lesions & interstrand X-links

Progressive aging symptoms²
- Kyphosis
- Cachexia
- DNA damage

Genotoxic Stress
- Loss of vision and hearing
- Reduced renal & liver function
- Neurodegeneration (dystonia, ataxia...)
- Intervertebral Disc Degeneration

~ 2-3yr wt

Intervertebral disc degeneration in Ercc1−/Δ

X-ray images

Percent Disc Height

Aggrecan fluorescence

Wt (3wks)

Ercc1−/Δ (18wks)

Wt (2yrs)

Wt (3wks) Ercc1−/Δ (18wks) Wt (2yrs)

Wt Ercc1−/Δ

3-5 wks 18-20 wks 2.5 yrs

*
1. The *Ercc1*⁻/Δ mouse model, a new model for studying intervertebral disc degeneration

2. Targeting the NF-κB pathway for slowing down intervertebral disc degeneration

3. Targeting mitochondrial-generated reactive oxygen species (ROS) in intervertebral disc degeneration
NF-κB is the transcription factor most associated with mammalian aging\(^3\)

NF-κB is up-regulated in a variety of aged tissues and age-associated diseases\(^4, 5\)

- **Inflammatory diseases**
 (Rheumatoid arthritis, diabetes, etc.)

- **Non-inflammatory diseases**
 (Atherosclerosis, osteoporosis, etc.)

NF-κB is a family of transcription factors involved in cellular response to damage. p50/p65 heterodimer is the most common factor of the NF-κB family.6

NF-κB is activated in cells by many cellular stressors; inflammatory, oxidative, genotoxic, mechanical, and chemical stress are among them.6

Two separate activation pathways have been described:

1. Canonical pathway
2. DNA damage pathway
NF-κB activation in aged human disc nucleus pulposus

Aging activates NF-κB transcription factor

Nerlich et al., ANYAS 2007;
NF-κB is activated in aging mouse discs

- NF-κB activation in aged human disc nucleus pulposus

- NF-κB activation in aged mouse discs

Activated NF-κB

NF-κB–eGFP reporter mice

Green cells = NF-κB activation

Promoter element

eGFP

Young (5 mths)

Old (28 mths)

NF-κB is activated in aging mouse discs

- NF-κB activation in aged human disc nucleus pulposus
- NF-κB activation in aged mouse discs

NF-κB gene targets include IL-1β, IL-6, iNOS, MMP-1β, MMP-3.

qRT-PCR analysis of mouse disc RNA.
NF-κB is activated in aging mouse discs

- NF-κB activation in aged human disc nucleus pulposus\(^7\)
- NF-κB activation in aged mouse discs\(^8\)
Hypothesis and Prediction

Chronic activation of NF-κB mediates age-associated disc degeneration.

Prediction

NF-κB

NF-κB
1. Pharmacological inhibition

Ercc1−/Δ Mice

IKK \(\xrightarrow{X} \) IκB \(\xrightarrow{\text{NBD}} \) NF-κB

Approach: Blocking NF-κB activity

mNBD / NBD peptide
The NBD peptide: structure

<table>
<thead>
<tr>
<th>Peptide</th>
<th>N-Transduction Domain</th>
<th>GG</th>
<th>IKKγ Blocking Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K-NBD:</td>
<td>KKKKKKKKKK------------</td>
<td>GG-</td>
<td>TALDWSWLQTE</td>
</tr>
<tr>
<td>8K-mNBD:</td>
<td>KKKKKKKKKK------------</td>
<td>GG-</td>
<td>TALDASALQTE</td>
</tr>
</tbody>
</table>

Bioactivity of 8K-NBD (NEMO Binding Domain) peptide

- Inhibits IL-1β and TNFα induced NF-κB activation \textit{in vitro}
- Efficacious in animal models of
 - Inflammatory bowel disease \textit{(Dave et al., J Immunology 2007)}
 - Muscular dystrophy \textit{(Acharyya et al., JCI 2007)}
 - Arthritis \textit{(Dai et al., J Biol Chem 2004)}
The NBD peptide: functioning

NBD peptide

decreases NF-κB expression in Ercc1\(^{-/\delta}\) mice
Ercc1$^{-/\Delta}$ **Wt** (untreated)

NBD treatment delays the onset of osteoporosis in Ercc1$^{-/\Delta}$ mice

Vertebral Porosity (μCT)

- **mtNBD**
- **NBD**

Porosity (% of Wt control)

- **Wt**
- **Ercc1**$^{-/\Delta}$
- **Ercc1**$^{-/\Delta}$ mNBD
- **Ercc1**$^{-/\Delta}$ NBD

Significant difference
NBD treatment improves disc histology in Ercc1\(^{-/\Delta}\) mice.
NBD treatment improves disc matrix content

GAG content (μg GAG/ng DNA)

<table>
<thead>
<tr>
<th></th>
<th>WT NT</th>
<th>Ercc1−/− NT</th>
<th>Ercc1−/− NBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

PG synthesis (fmoles sulfate/ng DNA)

<table>
<thead>
<tr>
<th></th>
<th>WT NT</th>
<th>Ercc1−/− NT</th>
<th>Ercc1−/− NBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>
1. Pharmacological inhibition

IKK \rightarrow X \rightarrow \text{IκB} \rightarrow \text{NF-κB}

Non-target effects

Ercc1^{-/Δ} Mice

2. Genetic reduction

NF-κB dimer

p65^+/- Ercc1^{-/Δ} Mice

p65^+/- Ercc1^{-/Δ} Mice
NF-κB p65 haploinsufficiency delays the onset of age-related IDD

Safranin O

Ercc1^{-/Δ}

Ercc1^{-/Δ} p65^{+/−}

EP NP AF

Total NP GAG (μg GAG/μg DNA)

PG synthesis (μmol sulfate/μg DNA)

20 wks

WT Ercc1^{-/Δ} Ercc1^{-/Δ} p65^{+/−}

#
• Increased level of NF-κB activity in disc cells of natural aging (Wt) and progeroid (Ercc1^{-/-}) mice.

• Systemic treatment of Ercc1^{-/-} mice with the NBD peptide (NF-κB inhibitor) ameliorated age-dependent degenerative changes in discs/spine.
 - Disc cellularity
 - Disc matrix PG content
 - Disc PG synthesis
 - Vertebral bone porosity

• Similar protective effects were seen with p65 genetic haploinsufficiency.
1. The *Ercc1*⁻/Δ mouse model, a new model for studying intervertebral disc degeneration

2. Targeting the NF-κB pathway for slowing down intervertebral disc degeneration

3. Targeting mitochondrial-generated reactive oxygen species (ROS) in intervertebral disc degeneration
Reactive oxygen species (ROS) are chemically reactive molecules (e.g. O_2^-, H_2O_2, OH^-). ROS are a natural byproduct of normal oxidative metabolism. Mitochondria are the main source of ROS within most cells.
Production of ROS is an **inevitable** biochemical consequence of oxygen metabolism

Antioxidant systems maintain a controlled balance against oxidative stress within the cell
Numerous studies have shown that oxidative damage increases with age in many tissues and various organisms.9, 10, 11, 12

Neurodegenerative diseases (Patel VP, Int J Clin Exp Pathol 2011)
- Lou Gehring’s disease (ALS)
- Parkinson’s disease
- Alzheimer’s disease
- Huntington’s disease

Cardiovascular diseases (Wang JC, Circ Res 2012)
- Reperfusion injury following hypoxia

Chronic fatigue syndrome (Nijs J, Man Ther 2006)

Gastric cancer (Handa O, Redox Rep 2011)
...but intervertebral disc is hypoxic!

Nutrition of the intervertebral disc.
Spine; 29 (23):2700-2709
Vascular ingrowth in degenerated intervertebral discs

Adams MA, Clin Biomech 2010

Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science.
Spine; 27(23):2631-2644
Disc cells from 20 wk old Ercc1^{−/Δ} mice show greater mitochondrial death (arrows) compared to wild-type littermates by transmission electron microscopy.

Ercc1^{−/Δ} mice
(DNA repair defect)

Accelerated aging
Growing human NP (nucleus pulposus) cells

in vitro increases ROS production
The XJB-5-131 radical scavenger

XJB-5-131 is a mitochondria-targeted ROS scavenger

XJB-5-131 has been previously shown to be therapeutic in rodent models of hemorrhagic shock and sepsis.\(^\text{13}\)

Dr. Peter Wipf
Professor of Pharmaceutical Sciences
Department of Chemistry
University of Pittsburgh, USA
Assessing the effects of oxidative stress *in vitro* on human disc cell cultures

Assessing the effects of oxidative stress *in vivo* on *Ercc1*-Δ mice testing the XJB-5-131 radical scavenger
High oxygen levels have catabolic effects on human disc cells \textit{in vitro}.

Reduced matrix synthesis.
XJB-5-131 rescues in vitro effects of high O₂

- **Gene Expression**
 - XJB-5-131 rescues in vitro effects of high O₂ on gene expression for Agc, ADAMTS4, ADAMTS5, MMP1, and MMP3.
 - XJB-5-131 increases relative gene expression (%).

- **PG Synthesis**
 - XJB-5-131 rescues in vitro effects of high O₂ on PG synthesis (%).

- **Graphs**
 - Comparison of relative gene expression and PG synthesis under 5% and 20% O₂ conditions with and without XJB-5-131.
Systemic treatment with XJB in Ercc1\(^{-}/\Delta\) mice

Ercc1\(^{-}/\Delta\) mice
(DNA repair defect)

Accelerated aging

9 wks \[\rightarrow\] 25 wks

Systemic anti-oxidant therapy in *Ercc1\(^{-}/\Delta\) mice* to slow down IDD

Treatment:
- XJB-5-131 by IP injection
 2mg/Kg, 3x/week
 Treatment start: 4 weeks
 Treatment end: 12 weeks

Age (weeks)

0 4 8 10 12 14 16 20
XJB treatment improves disc histology in Ercc1^{-/Δ} mice

XJB-5-131

Neg. control
XJB treatment improves disc matrix content

Total GAG content (µgGAG/ng DNA)

- NT
- Oil
- XJB

PG Synthesis (fmoles sulfate/ng DNA)

- NT
- Oil
- XJB

* indicates p < 0.07
Conclusions

• Oxidative stress has been well established as a key driver of aging.

• We showed that ROS were produced in disc cells at high oxygen tension and this correlates with:
 ➢ Reduced PG (new matrix) synthesis
 ➢ Enhanced expression of catabolic factors

• Depleting ROS in disc cells using XJB-5-131 rescued matrix homeostatic imbalance

• Mitochondria-targeted free radical scavengers could be therapeutic in delaying the onset of age-related IDD
Acknowledgements

Ferguson Laboratory of Orthopaedics Research
James Kang (Director)
Gwen Sowa (Co-director)
Nam Vo (PI)
Rebecca Studer, Joon Lee
Hyoung-Yeon Seo
Kevin Ngo, Qing Dong
Hong Joo Moon, Takashi Yurube, Robert Hartman, Wan Huang,
Paulo Coelho, Kevin Bell, Lou Duerring.

University of Pittsburgh
Hillman Cancer Institute
Laura Niedernhofer
Paul Robbins
Jeremy Tilstra
Andria Robison
Cheryl Clauson NBD peptide

Funding Sources
The Pittsburgh Foundation
UPMC Department of Orthopaedics Surgery
Orthopaedic Research and Education Foundation
AOSpine North America Young Investigators Research Grant
“BioSpina” Italian Spine Society Research Grant
NIH (R21 AG033046), NIH (ES016114)
Thank you